Membrane transporters are proteins which facilitate the entry and exit of molecules into cells. Transport processes often require a source of energy in order to move substances against unfavourable concentration gradients or, in the case of charged species, against electrochemical gradients. This places thermodynamic constraints on the function of transporter proteins.
In our new paper, published in the Journal of Theoretical Biology, we outline an energy-based modelling framework, using the bond graph approach, with which to model and understand transporters. We apply this modelling approach to several key transporters that occur in heart cells (the sodium pump, and the calcium transporter SERCA).
This work has significance for all cell models which involve transport process, as the vast majority of mathematical models of transporter proteins in the scientific literature are not thermodynamically consistent, and may therefore give misleading results.
The paper is available here:
M. Pan, P.J. Gawthrop, J. Cursons, K. Tran, E.J. Crampin (2018)
A thermodynamic framework for modelling membrane transporters
Journal of Theoretical Biology
Congratulations to Michael and coauthors on this work.