Heart cells contain a high volume of mitochondria, which are necessary to generate the ATP energy supply that is needed to sustain normal heart function.
Previously, mitochondria were understood to be arranged in a regular, crystalline pattern in heart cells which, it was argued, would facilitate a steady supply of ATP under different workloads. In a new paper by Shourya and many colleagues, in a study led by Vijay Rajagopal, new electron microscopy images show that mitochondria are not regularly arranged in cardiomyocytes. A spatially accurate computational model suggests that this heterogeneous distribution of mitochondria can lead to non-uniform energy supply and hence imbalanced contractile force production across the cell under stress conditions such as during heart failure.
The new study, ‘Insights on the impact of mitochondrial organisation on bioenergetics in high-resolution computational models of cardiac cell architecture’, is published in PLoS Computational Biology: